Electricity Rate Setting in the New Era of Renewables

Severin Borenstein

E.T. Grether Professor of Business and Public Policy, Haas School of Business, UC Berkeley

Co-Director, The Energy Institute at Haas

Director, University of California Energy Institute
Why is cost-based pricing important?

- Gives customers efficient incentives to use or conserve
 - Price should reflect the full social marginal cost of consuming
 - Customer’s private consumption decision then incorporates the full cost of production
- Sense of fairness across all customers
 - Deviations from cost may help some “deserving” customers, but likely to miss many and to help some “undeserving”
What does cost-based pricing look like?

- Fixed charge represents the per-customer cost that does not vary with the quantity the customer consumes
 - Such as billing, metering, service connection
- Volumetric charge represents the marginal cost of delivering power
 - Depends on time of consumption
 - Doesn’t depend on amount of consumption
 - Increasing-block pricing is not cost based
- What about systemwide fixed costs?
 - Want to be both fair and efficient in collection
If we deviate from cost-based pricing, who should benefit?

- The poor
 - Special programs to help low-income

- The disabled
 - If not poor? Different thresholds for disabled?

- The elderly
 - If not poor or disabled?
 - Income-based criteria (as opposed to wealth-based) tend to favor retired.

- Should special rates lower fixed charge or volumetric charge?
How does renewables expansion change the challenges of rate setting?

- Policies for distributed generation from renewable intermittent resources – solar PV
 - Net energy metering versus feed-in tariff
- Cost of meeting a renewable energy goal?
 - Potential value from exceeding the goal
- Systemwide integration challenges as more renewables are on the grid
 - Potential for major changes in timing and types of grid management issues.
Cost of meeting renewable goal

- Around California rising RPS will increase retail bills
- Incremental renewable energy costs more than incremental energy from fossil fuels
 - Wind/solar costs are declining, but gas is cheap
- AMP is in the unusual position of exceeding all renewable goals
 - Raises the question of what to do with extra renewable credits
Integrating large quantities of solar will change the shape of net demand

- The Duck Graph (for March)
Implications of the Duck Graph

- Potential for very cheap power mid-day in spring/fall, also many summer/winter days
 - Lowers the value of power from solar PV

- Extreme ramping constraints for non-solar generation in morning and evening
 - Over-generation in afternoon and steep ramping may lead to curtailing solar

- Peak (net of solar) demand shifts more towards early evening

- “Solutions”: storage, demand shifting, trade
Implications for Alameda

- AMP is less exposed due to less peaky demand and long-term power contracts.
- But the impact of statewide RPS changes and renewables integration will change the environment for all power contracting.
- And will alter the value of distributed generation in ways still not well understood.
- May put more pressure on any tariffs that do not reflect costs.